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Motivation

* Few-shot learning is the problem of learning a task given only a few
data samples. The additional database is often available for pre-
training.

* Our goal is to design a continual learning framework for the few-shot
learning.

* We propose a non-commutative task affinity score that is used to
identify the related base tasks/classes of data.

* Next, we use the related data for pre-training and then fine-tuning
the model with the few-shot data.
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Task Definition

* A task is often defined as the function of data samples and the
corresponding loss function.

e For classification task, a task is defined as the function of data
samples and corresponding labels.

* We represent a task by a well-trained neural network on the data,
referred to as an e-approximation network.
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Task Affinity Score

* The task affinity score (TAS) is asymmetric by design, since it is easier
to apply comprehensive task to the simple one than vice versa.

* Let (T,, X,) be the source task-dataset. Ny, is the approx. network.
* F, 4 is the Fisher Information matrix of Ny, with Xguery.
* Let (T, Xp) is target task-dataset.

* I, p is the Fisher Information matrix of Ny, with leupport.

 TAS is defined as: ) )
F2 —F2
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Few-shot Framework

* A few-shot task of M-way K-shot is the classification of M classes,
each class has K data points for training.

e Our proposed framework consists of 3 phases:

1. Training Whole-Classification Network and Feature Extraction: training the
representor network for the entire database classes and use this network’s
encoder for feature extraction.

2. Task Affinity: find the most related data classes in the database to the
target few-shot task and construct the related dataset.

3. Episodic Fine-tuning: pretrain the few-shot model with related dataset,
then episodic fine-tune the model with few-shot target data.
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Few-shot Diagram
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Phase 1

i. Training the Whole-Classification Network: train a neural network
with the entire classes in the database.

ii. Feature Extraction: given the encoder of the well-trained whole-
class network, we extract the feature vectors for each class of data
and compute the mean vector, called centroid. This centroid is the
embedding vector for the corresponding class of data.
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Phase 2

* We define source tasks (with the same format as the target task) by
randomly drawing the classes from the database.

ili. Matching Labels: map each source tasks’ centroids to the target
task’s centroids to minimize the cumulative distance between pairs.
After matching, we modify the source task’s labels to match the

target task’s labels. This process guarantees the computed distance
is label-invariant.

iv. Constructing e-approx. Network: train a neural network to
represent the modified label source task.

v. Fisher Information Matrix: compute Fisher matrices and TAS from
source task to target task.
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Phase 3

* Repeat the process in Phase 2 for various source tasks. Next, we
select the top-N source tasks, and collect the corresponding classes of

data.
* Construct the related dataset using the related classes.

vi. Episodic Fine-Tuning: construct the few-shot model using the
encoder of the whole-class network (from Phase 1) and the k-NN
classifier. Randomly generate few-shot base task from the related

dataset and fine-tuning the few-shot model using cross entropy
loss. Lastly, apply the target data to update the k-NN classifier of

the few-shot model.
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Experimental Results

* We conducts experiments on minilmageNet and tieredlmageNet.

* We compute the TAS for numerous source tasks, which are randomly
generated from the dataset.

Histogram of TAS in minilmageNet

Histogram of TAS in tieredlmageNet
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Results

* We select the top-N closest

Table 1: Comparison of the accuracy against state-of-the art methods for 5-way 1-shot and 5-way

5-shot classification with 95% confidence interval on minilmageNet dataset.

Model Backbone Params 1-shot 5-shot

t k t t t t h I t d Matching-Net (Vinyals et al., 2016) ConvNet-4 0.11M 43.56+0.84 55.31+0.73
MAML (Finn et al., 2017) ConvNet-4 0.11M 48.70+1.84 63.11+0.92

a S S O CO n S r u C e re a e Prototypical-Net (Snell et al., 2017) ConvNet-4 0.11M 49.42+0.78 68.20+0.66
d t t Simple CNAPS (Bateni et al., 2020) ResNet-18 11IM 53.2+40.90 70.8+0.70
a a S e . Activation-Params (Qiao et al., 2018) | WRN-28-10 | 37.58M | 59.60+0.41 73.74+0.19
LEO (Rusu et al., 2018) WRN-28-10 | 37.58M | 61.76+0.08 77.59+0.12

. Baseline++ (Chen et al., 2019) ResNet-18 11.17M | 51.87+0.77 75.68+0.63

e Qur few-shot models achieve SNAIL (Mishra et al., 2017) ResNet-12 | 7.99M | 5571005  68.88+092
.. . AdaResNet (Munkhdalai et al., 2018) | ResNet-12 7.99M 56.88+0.62 71.94+0.57

TADAM (Oreshkin et al., 2018) ResNet-12 7.99M 58.50+0.30 76.70+0.30

CO m p et Itlve res u |tS g I Ve n a MTL (Sun et al., 2019) ResNet-12 8.29M 61.20+1.80 75.50+0.80
MetaOptNet (Lee et al., 2019) ResNet-12 12.42M | 62.64+0.61 78.63+0.46

smaller number of parameters. SLA-AG (Lee et l., 2020) ResNet12 | 799M | 6293063  79.63x0.47
ConstellationNet (Xu et al., 2020) ResNet-12 7.99M 64.89+0.23 79.95+0.17

A . R t k . RFS-distill (Tian et al., 2020) ResNet-12 13.55M | 64.82+0.60 82.14+0.43
L EPNet (Rodriguez et al., 2020) ResNet-12 7.99M 65.66+0.85 81.28+0.62
S m O re I n CO m I n g a S S a rrlve’ Meta-Basleline (Chen et al., 2021) ResNet-12 7.99M 63.17+0.23 79.26+0.17

H IE-distill* (Rizve et al., 2021) ResNet-12 9.13M 65.32+0.81 83.69+0.52
our framework is ca Pad ble of TAS-simple (ours) ResNet-12 | 7.99M | 64.71+0.45 82.08+0.45
. . TAS-distill (ours) ResNet-12 799M | 65.13+0.39 82.47+0.52
learning continuously. TAS-distill” (ours) ResNet-12 | 12.47M | 65.68+0.45 83.92:t0.55

! performs with standard ResNet-12 with Dropblock as a regularizer, > performs with wide-layer ResNet-12
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IVl O r e | { e S u | t S Table 3: Comparison of the accuracy against state-of-the art methods for 5-way 1-shot and 5-way
5-shot classification with 95% confidence interval on CIFAR-FS dataset.

CIFAR-FS
Model Backbone Params 1-shot 5-shot
MAML (Finn et al., 2017) ConvNet-4 | 0.11M 58.90+1.90 71.50+1.00
Prototypical-Net (Snell et al., 2017) ConvNet-4 | 0.11M 55.50+0.70 72.00+0.60
Relation-Net (Sung et al., 2018) ConvNet-4 | 0.11M 55.00+1.00 69.30+0.80
Prototypical-Net (Snell et al., 2017) ResNet-12 | 7.99M 72.20+0.70  83.50+0.50
Shot-Free (Ravichandran et al., 2019) | ResNet-12 | 7.99M 69.20+n/a 84.70+n/a
Table 2: Comparison of the accuracy against state-of-the art methods for 5-way 1-shot and 5-way TEWAM (Qiao et al., 2019) ResNet-12 | 7.99M 70.40+n/a 81.30+n/a
5-shot classification with 95% confidence interval on tieredImageNet dataset . MetaOptNet (Lee et al., 2019) ResNet-12 | 12.42M | 72.60+0.70  84.30+0.50
RFS-simple (Tian et al., 2020) ResNet-12 | 13.55M | 71.50+0.80 86.00+0.50
Model Backbone Params T-shot 5 shot RFS-distilll (Tian et al., 2020) ResNet-12 | 13.55M | 73.90+0.80  86.90+0.50
MAML (Finn et al., 2017) ConvNet-4 0.11M 51.67+1.81 70.30+0.08 IE-dlSt‘lll (Rizve et al., 2021) ResNet-12 9.13M 75.46+0.86 88.67+0.58
Prototypical-Net (Snell etal., 2017) | ConvNet-4 | 0.11M | 53.31+0.80  72.69+0.74 TAS-simple (ours) ResNet-12 | 7.99M | 73.47+0.42  86.82+0.49
Relation-Net (Sung et al., 2018) ConvNet-4 | 0.11M | 54.48+0.93  71.32+0.78 TAS-distill (ours) ResNet-12 | 7.99M | 74.02+0.55 87.65:+0.58
Simple CNAPS (Bateni et al., 2020) | ResNet-18 | 11M | 63.00+1.00  80.00+0.80 TAS-distill” (ours) ResNet-12 | 12.47M | 75.56+0.62 88.95+0.65
LEO-trainval (Rusu etal., 2018) ResNet-12 | 7.99M 66.58-0.70 85.55:0.48 ! performs with standard ResNet-12 with Dropblock as a regularizer, 2 performs with wide-layer ResNet-12
Shot-Free (Ravichandran et al., 2019) | ResNet-12 | 7.99M 63.52+n/a 82.59+n/a
Fine-tuning (Dhillon et al., 2019) ResNet-12 | 7.99M 68.07+0.26 83.74+0.18
MetaOptNet (Lee et al., 2019) ResNet-12 | 12.42M | 65.99+0.72 81.56+0.53 Table 4: Comparison of the accuracy against state-of-the art methods for 5-way 1-shot and 5-way
RFS-distill (Tian et al., 2020) ResNet-12 | 13.55M | 71.52+0.69 86.03+0.49 5-shot classification with 95% confidence interval on FC-100 dataset.
EPNet (Rodriguez et al., 2020) ResNet-12 | 7.99M 72.60+0.91 85.69+0.65
Meta-Baseline (Chen et al., 2021) ResNet-12 | 7.99M 68.62+0.27 83.74+0.18 FC-100
I&glst.ﬂll l(thve e)t al,, 2021) gesgei- 3 173;951\1}[4 7712';;::0'90 sg'ggio'ss Model Backbone Params 1-shot 5-shot
~Sumpe (Ours es vet- . -90+£0.39 - 8.08:£0.46 Prototypical-Net (Snell et al., 2017) | ConvNet-4 | 0.IIM | 35.30+0.60  48.60+0.60
TAS-distill (ours) ResNet-12 | 7.99M | 72.81+0.48 87.21+0.52 Protoglp)ical-Net (Snell etal,, 2017) | ResNet-12 | 7.99M | 37.50x060  52.50+0.60
! performs with wide-layer ResNet-12 with Dropblock as a regularizer TADAM (Oreshkin et al., 2018) ResNet-12 | 7.99M 40.10+0.40 56.10=+0.40
MetaOptNet (Lee et al., 2019) ResNet-12 | 12.42M | 41.10+0.60 55.50+0.60
RFS-simple (Tian et al., 2020) ResNet-12 | 13.55M | 42.60+0.70 59.10+0.60
RFS-distill (Tian et al., 2020) ResNet-12 | 13.55M | 44.60+0.70 60.90+0.60
IE-distill! (Rizve et al., 2021) ResNet-12 | 9.13M 44.65+0.77 61.24+0.75
TAS-simple (ours) ResNet-12 | 7.99M | 43.10+0.67 60.65+0.62
TAS-distill (ours) ResNet-12 | 7.99M | 44.62+0.70 61.46+0.65

! performs with standard ResNet-12 with Dropblock as a regularizer
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Conclusion

* We propose a non-commutative task affinity.

* We design a few-shot learning framework that has memory and is
capable of selective learning from the related data.

* Our few-shot model achieves competitive performance while using a
small number of parameters.

e Additionally, this model is capable of continuous few-shot learning.
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