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Introduction

* Most of the deep learning models do not provide sufficient
interpretability for the learned features.

* This framework typically produces a black-box model for the
classification task.
* For instance, the network model only learn what it had been asked to classify.

* The model don’t provide any visualization of features or interpretable
decision rules.




Introduction (cont’)

* The objectives of proposed model:
* Understanding the data not only by their labels but also their features
* Providing interpretable graph of features
* Generating new data (generative model)




Supervised-Encoding Quantizer

* The supervised-encoding quantizer (SEQ) model consists of an
encoder, a quantizer, and a decoder.

* This model is inspired by the autoencoder structure.

* The quantizer serves as a clustering mechanism in the feature space
of the autoencoder.

* The encoder is a traditional convolutional neural network.

* The decoder is also a convolutional neural network, whose structure
reflects encoder’s.




Supervised-Encoding Quantizer

* Encoding: we pre-train the encoder by attaching a Softmax layer to its
output and train the encoder via standard supervised training;

* Quantization: the encoded features produced by the pre-trained
encoder are passed to the quantizer for clustering

* Decoding: we further train a decoder that can reconstruct the original
data samples from the encoded features.
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Encoder

* To obtain meaningful embedding features, we pre-train the encoder
with labeled data.

* (Encoder + Softmax) is similar to a traditional convolutional neural
network and can be trained with cross-entropy loss and stochastic
gradient descend.

* Remove the Softmax layer after training, and the output of encoder is
guaranteed to be linearly separable

Figure 2. Convolutional Neural Network
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Quantizer

* Apply quantizer to the feature space (output of the encoder).

* Quantization techniques: k-means, vector quantization, self-organizing map,
grow-when-required network.

* By choosing the quantized clusters greater than the total number of
class label, the quantizer can identify the sub-classes within each class
of data.

* The accuracy of the quantizer is upper bounded by that of the encoder.
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Decoder

* Apply decoder to the output of the encoder in order to reconstruct
the data from the embedded features.

* To train the decoder, we fix all the parameters of the encoder and
apply the MSE loss to measure the reconstruction error on the

training data samples:
L(0) := | X — Do(sgl€(X))?

* Training decoder here is like training the autoencoder with the
encoder part is fixed.



Experimental Results

* SEQ performs well compared with other clustering methods due to
the semi-supervised pre-trained encoder.

MNIST
Table 1. The clustering performance on MNIST
1 DEC IDEC DCEC CAE-l, SEQ
k-means k-means
1 T 86.55 88.06 88.97 95.11 99.74 (0.046)
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Experimental Results (cont’)

* |t preserves the interpretability of features.

* The interpretable representation of images from a same clusterhave a
similar style.

Figure 5. Reconstructed images
from small sub-classes in MNIST
(left) and fashion-MNIST(right)
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Experimental Results (cont’)

* |t can be used to generate specific type of data within a specific class.
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Conclusion

* SEQ shows that the feature space contains useful information

e SEQ can learn more about the data while maintain the meaningful of
its features via the class label.

* The interpretability of feature can be used to further classify data into
subclasses of different styles or generative purposes.
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