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Introduction

Introduction

@ The distance between tasks is a form of non-commutative information,

which represents the difficulty to apply the knowledge of one task to the
other.

@ The notion of distance between tasks is extremely important, and can be
applied to a wide range of applications (i.e., transfer learning, neural
architecture search, continual learning, meta learning, etc.)

@ In this presentation, we demonstrate our distance measure and how to apply
it to the neural architecture search.

Cat Le (Duke University) March 02, 2020 3/48




Introduction

Distance Between Tasks

@ There are several methods that attempt to evaluate the difference between
task/data set.

@ Some of these approaches are based on transfer learning, or some complexity
measure of transferring knowledge of one task to another.

@ We propose 2 approaches based on Fisher information :

» Log-determinant of Fisher Information Matrices
» Frechet distance of Fisher Information Matrices

@ Our task dissimilarity measures are inherently asymmetric (non-commutative).
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Introduction

Key Assumptions

o All datasets X;, i = 1,2, ..., t are of the same size.

@ Any task T and its dataset X can be represented by a sufficiently trained
g-approximation network.

o Let Py(T,X) be a function that measures the performance of the
architecture N on task T with data set X, with a range in [0, 1].

@ For a given 0 < £ < 1, an architecture N is an e-approximation for (T, X) if
PN(T,X) >1—c¢.

@ In practice, we can use well-known hand-designed architectures as the
g-approximation networks.
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Task Similarity

Fisher Information Matrix

@ Fisher Information Matrix is related to the 2"¢ order partial derivatives of the
loss function with respect to the parameters.

@ Let X be the input data and 6 = [0y, 65, ..., On] be the parameters of the
network model. We seek to optimize the likelihood p(X|6) with respect to 6
by maximizing the log-likelihood log(p(X|6)). We define the gradient of the
log-likelihood as s(#) :

s(0) = Vg log(p(X|0)). (1)
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Task Similarity

Fisher Information Matrix

@ The gradient of the log-likelihood s(6) describes the changes in likelihood
with respect to each parameter 6; in 6.

@ The Fisher Information Matrix captures the relation between s(6;) and s(¢;)
for i,j € N. The Fisher Information Matrix is the covariance of the gradient
of the log-likelihood s(6) :

Fo = Ep(xi)[(5(9) = Ep)[s(O))(5(0) = Epxio[s(O)])]- ()
o When E,,0)[s(0)] = 0, lp is simplified as :

Fo = Ep(x0)[Ve log(p(x|0)) Ve log(p(x]0))"]. 3)
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Task Similarity

Fisher Information Matrix

@ In order to compute the Fisher Information Matrix, we need the log-likelihood
with respect to 0, which is often intractable.

o Let X = [x1, X2, ..., xpm] be samples drawn from p(x|@). The empirical Fisher
Information is defined as :

M
Fi = 2 > Valog(p(x16))Va log(p(x/6)) )
i=1
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Task Similarity

Tasks and Their Fisher Information Matrices

Let B={(T1,X1),(T2,X2),...,(Tk, Xk)} denote a set of K pairs of
baseline "learned" tasks and their corresponding data sets.

Suppose that e-approximation networks Ny, No, ..., Nx respectively
correspond to (T;, X;), i=1,2,--- | K.
» < is chosen such that € = min(e1,2,...,ex), where Py, (T;, Xj) > 1 — ;.

Let N; be an e;-approximation network for the target task-data pair (T¢, X;)
for some 0 < g; < €.

Our goal is to evaluate how well the baseline approximation networks
N;, i=1,2,...,K perform on the target data set X;.

@ The target data set X; is used to compute the empirical Fisher Information
Matrices for all the approximation networks.
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Task Similarity

The Similarity Measure (Log-Determinant Distance)

For some b € {1,,2,..., K}, let N, denote the e-approximation network
corresponding to b" baseline task-data set pair.

Let Fp ¢ be the Fisher Information Matrix of N, with data X; from the task t.
Let F; ; be the Fisher Information Matrix of N; with data X; from the task t.
o We define the dissimilarity from the task b to the task t as follows :

dlb,f] = log(det(Fp,r + 02 % Inxn)) B log(det(F¢,: + 02 % Imxm)) o)

n m

Where [ is the identity matrix, o is a pre-selected small constant, n and m
are the number of parameters in N and N, respectively.
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Task Similarity

The Similarity Measure (Log-Determinant Distance)

@ If m = n, then the distance can be expressed as :

)\Q,t+a

d[b,t] = = ‘Z| Xtt+0_2)

(6)

@ Where X is the it eigenvalue of the Fisher information matrix.

@ This proposed dissimilarity is greater than or equal to 0, with the distance
d = 0 indicating perfect similarity.
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Task Similarity

Experiments with The Log-Determinant Distance

@ Consider 8 tasks of classifications in MNIST and CIFAR-10.

» Task O : binary classification of detecting digit 0

Task 1 : binary classification of detecting digit 6

Task 2 : binary classification of odd vs. even digits

Task 3 : 10-class classification in MNIST

Task 4 : binary classification of detecting (car, cat, ship)

Task 5 : binary classification of detecting (cat, ship, truck)

Task 6 : 4-class classification of bird, frog, horse, and anything else
» Task 7 : 10-class classification in CIFAR-10

o Let VGG-16 be the s-approximation for these tasks.

@ To apply VGG-16 to MNIST tasks without architecture modification, we
convert MNIST data to greyscale (i.e., 3 channels) and reshape images into
32 x 32.

VVYyVYYVYYVYY
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Task Similarity

Experiments with The Log-Determinant Distance
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FIGURE — Distances between classification tasks from MNIST and CIFAR10.
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Task Similarity

Experiments with The Log-Determinant Distance

@ The it" column of the mean table represents the average distance from other
tasks to the target Task i (t = /).

@ Our results suggest that two tasks from the same data set (e.g., MNIST or
CIFAR-10) are often more similar than tasks involving different data sets.

@ It is perhaps surprising that the closest task to Task 3 is Task 7.

@ Since other MNIST tasks are binary classification tasks, they do not
intuitively appear as similar to the 10-class classification, even though Task 3
and Task 7 are using different data sets.
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Task Similarity

Frechet Distance of Fisher Information Matrices

@ Another approach to measure the distance between tasks is using the Frechet
distance on Fisher Information Matrices.

@ Let Fp, be the Fisher Information Matrix of N, with data X; from task t.
@ Let F;; be the Fisher Information Matrix of N, with data X; from task t.
@ We define the distance from baseline task b to target task t as :

df[b, t] =

tr(Fb’t + Ft,t — 2(Fb7tFt7t)O'5)O'5. (7)

S
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Task Similarity

Frechet Distance of Fisher Information Matrices

@ Assume that Fp;, F;: are approximated by only their diagonal entries.
@ We normalize Fp+, F;+ to have unit trace.
@ The distance can be expressed by :

. f\/z (Ap)% = (AL (8)

@ This task dissimilarity measure ranges in [0, 1], with d = 0 denotes the
perfect similarity and d = 1 means totally dissimilar tasks.

1/2 _ g1/ 2

bt = HF F
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Task Similarity

Properties of Frechet Distance

Remark (Remark 1)

Let X be the data of task T. For any Fisher Information matrix found by the
e-approximation network N on data X using gradient descent, with the same
initialization settings and learning rate, then the Frechet distance between each
pair of these Fisher information matrices are 0.

Proof

Let Ny, Nyy1 be the network trained with data X at time t and (t + 1) using full
gradient descent.

The weights of Ny and Ny1 are the same, because of the initial settings (e.g.,
seed, learning rate) are fixed.

Since Fisher Information matrix is the function of weights, networks with same
weights will give the same Fisher matrices.

Therefore, the Frechet distance between these matrices is 0.

| \
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Properties of Frechet Distance

Remark (Remark 2)

Let X be the input data from task T. For any Fisher Information matrix found by
the e-approximation network N on data X using stochastic gradient descent, with
the same initialization settings, and the same order of data points, the Frechet
distance between each pair of these Fisher matrices are 0.

Proof

Let Ny, Nyy1 be the network trained with data X at time t and (t + 1) using
Stochastic gradient descent.

The weights of Ny and Ny1 are the same, because of the initial settings (e.g.,
seed, learning rate) and the order of data are fixed.

Since Fisher Information matrix is the function of weights, networks with same
weights will give the same Fisher matrices.

Therefore, the Frechet distance between these matrices is 0.

| \
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Task Similarity

Properties of Frechet Distance

Theorem (Theorem 1)

Let X be the input data from task T. Assume the objective loss function L is
strongly convex and its 3rd-order continuous derivative exists and bounded. Let
the stochastic gradient function denotes as :

g(0s, ) = VL(0:) + e, (9)

where VL(60,) is the true gradient, €; is some added noise, and

Elet|eo, €1, ..., €t-1] = 0, and S = lim;— o E[ese; " |€o, €1, ..., €;_1] is finite.

For any Fisher information matrix found by the architecture network N trained on
dataset X using stochastic gradient descent, the Frechet distance between each
pair of these Fisher Information Matrices are close to 0.
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Task Similarity

Properties of Frechet Distance

Proof (Proof of Theorem 1)

Let Ny be the network trained on data X with random seed i, characterized by 6.
Let N, be the network trained on data X with random seed j, characterized by 0.
Since the objective function is strongly convex, both of these network will obtain
the optimum solution 6* after training a certain number of epochs with stochastic
gradient descend.

[Polyak and Juditsky, 1992] states that for t — oo, then :

Vil — 67) = N(0,H(L(67)) I S(H(L(E) ™)), (10)

where H is Hessian matrix, 6, = 1%,0,.
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Task Similarity

Properties of Frechet Distance

Proof (Proof of Theorem 1 (cont’))

Applying the equation 10, /t(61, — 0*) and \/t(f2; — 0*) are asymptotically
normal random variables :

V(e — 07) 2 N(0,H(L(0")) S (H(L(6")) ™)), (11)

and :

V(e — 67) = N (0, H(L(8)) " Sa(H(L(6")) ™)), (12)

Given that the empirical Fisher Information matrix is defined as :

F(0) = —E[H(L(0))] = Z (L(0)))

where N is the number of data points in the dataset. The Fisher Information F(0)
is a function of 0 and it is continuous and differentiable for all 6.

v
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Task Similarity

Properties of Frechet Distance

Proof (Proof of Theorem 1 (cont’))

Given that the Fisher Information matrix is positive definite, F(0)'/? is continuous
and differentible. Applying the Delta method, we have :

VAR Z ) 2, w0, 3y), (3)

where ¥ = Jg(vec(F(6*)/2))H(L(0%)) "2 S1(H(L(67)) 1) Jo(vec(F(6%)1/2))T
vec() is the vectorization operator, 8* is n x 1 vector of the optimum parameters,
F(0*) is n x n optimum Fisher matrix, Jo(F(6*)) is n* x n Jacobian matrix of the
Fisher matrix.

As the result, \/f(l-:li/2 — /-:2:/2) is asymptotically normal random variable :
=1/2 =1/2 1
(R = %) B V(0,2 50). (14)

g = Jo(vec(F(67)/2))H(L(07)) "} (S1 + S2)(H(L(9") 1) T Jo(vec(F(67)"/?))T.
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Task Similarity

Properties of Frechet Distance

Proof (Proof of Theorem 1 (cont’))

Given that the Frobenius norm of the n X n matrix is bounded by :
1/2 1/2 1/2 1/2 12 =12
e B L N e
o0

=1/2 £1/2
Since (Flt/ - th/ ) is asymptotically normal random variable with zero mean

and the covariance %Zd — 0 as t — oo, all of its entries will be zero. As a result,

Hl—:li/z — in/zH — 0 ast— oco. Ast — 00, the Frobenius norm of
F11/2 — ,_:Zt ) is bounded as below :

1/2

O<HF11/27F2t H <nx0=0.

1/2

Therefore, the Frechet distance d = f HF11/2 F2t H —0ast— oo.
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Task Similarity

Properties of Frechet Distance

Theorem (Theorem 2)

Let Xa be the input data for task T with the objective functions L.

Let Xg be the input data for task Tg with the objective functions Lg.

Assume X, Xg come from the same data distribution

Under the same assumptions Theorem 1, for any pair of Fisher information
matrices Fa, Fg found by the network N trained on datasets X, Xg with objective
functions L, Lg, respectively, using stochastic gradient descent, the Frechet
distance between Fa, Fg is a Gaussian random variable whose the variance — 0 as
t — 00.

v

Proof (Proof of Theorem 2)
Similar to the proof of Theorem 1
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Task Similarity

Frechet Distance on MNIST

o Consider 4 tasks in MNIST dataset :
» Task 0 : binary classification of detecting digit 0
» Task 1 : binary classification of detecting digit 6
» Task 2 : 5-class classification of digit 0, 1, 2, 3, and anything else
» Task 3 : 10-class classification
@ We compute the distance between these tasks using 3 different
g-approximation networks : VGG-16, ResNet-18, DenseNet-121.

@ For each network, we repeat the training procedure 10 times, with different
initial settings.
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Task Similarity

Frechet Distance MNIST
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Task Similarity

Frechet Distance on CIFAR-10

@ Consider 4 tasks in CIFAR-10 dataset :

» Task 0 : binary classification of detecting (car, cat, ship)

» Task 1 : binary classification of detecting (cat, ship, truck)

» Task 2 : 4-class classification of bird, frog, horse, and anything else
» Task 3 : 10-class classification

@ We compute the distance between these tasks using 3 different
g-approximation networks : VGG-16, ResNet-18, DenseNet-121.

@ For each network, we repeat the training procedure 10 times, with different
initial settings.
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Task Similarity

Frechet Distance CIFAR-10
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Task Similarity

Frechet Distance on CIFAR-10
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Task Similarity

Frechet Distance on CIFAR-100

@ In CIFAR-100, data is divided into 20 classes, where each class consists of 5
objects of similar type.

@ Consider 4 tasks in CIFAR-100 dataset :

» Task 0 : binary classification of detecting vehicles 1 & 2

» Task 1 : binary classification of detecting household devices & furniture

» Task 2 : 11-class classification of all vehicle and anything else

» Task 3 : 21-class classification of all vehicle, household devices & furniture,
and anything else.

@ We compute the distance between these tasks using 3 different
g-approximation networks : VGG-16, ResNet-18, DenseNet-121.

@ For each network, we repeat the training procedure 10 times, with different
initial settings.
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Task Similarity

Frechet Distance on CIFAR-100
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© Neural Architecture Search
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Neural Architecture Search

Neural Architecture Search (NAS)

NAS is a framework to find a best performing architecture for a given task.
It usually requires a lot of computational resources.
It normally takes hundreds of GPU hours.

Recent one-shot approach with a gradient-based search algorithm has
reduced the search time to a few GPU days.

@ However, all of these techniques heavily depend on the prior knowledge about
the search space.

@ They don't consider the relation between tasks in the search space.
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Neural Architecture Search

Task-aware Neural Architecture Search (TA-NAS)

@ TA-NAS is a NAS framework that incorporate the measure of similarity
between tasks into the search.

@ Based on the assumption in transfer learning, similar tasks should have
similar architecture.

@ It uses the knowledge of learned tasks to help define the search space for the
target task.

@ The search for best performing architecture becomes more efficient in this
restricted search space.
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Neural Architecture Search

Task-aware Neural Architecture Search (TA-NAS)

@ TA-NAS works as follows :

© Task Similarity : Given (T, X;), TA-NAS finds the most related task-data set
pairs in B.

© Search Space : It defines a search space as a combination of the related tasks.
© Search Algorithm : It searches for the best performing architecture.

@ Currently, we only consider one related task to the target task.

e Multiple related tasks can be examined (exploration - exploitation problem)
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Neural Architecture Search

Definition of Search Space

@ Defining a meaningful search space is the key to efficiently finding the best
architecture for a specific task.

@ In recent one-shot NAS techniques [Liu et al., 2018, Dong and Yang, 2020],
the search space is defined by cells and skeletons.

maxpool3x3

-3 >

(a) Cell

z g z g

o Q o o
a =3 [ 3 [ g
dat: <] 3 S 3 S S
ata S B 35 & [ 5 Ef
- o = o S 1]

© o © o

= o = o

xN xN

(b) Skeleton

FI1GURE — Example of cell and skeleton architectures.
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Neural Architecture Search

A cell is a densely connected directed-acyclic graph (DAG) of nodes, where
all nodes are connected by operations.

Each node has 2 inputs and 1 output.

The operations (e.g., identity, zero, convolution, pooling) are set so that the
dimension of the output is the same as that of the input.

@ If nis the number of nodes in a cell and m is the number of operations, the
total number of possible cells is given by : m x exp (ﬁ)

cell /\' cell ——> zeroize
Q/ ....... ~A skip-connect

1X1 conv
3X3 conv
———> 3%3 avg pool
predefined operation set

FIGURE — Example of cell architectures.
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Neural Architecture Search

Skeleton

@ A skeleton is a combination of cells with other operations, forming the
complete network architecture.

@ A skeleton is normally predefined.

@ The goal of NAS algorithm is to find the optimal cells.

architecture
- residual block residual block global
image |»{ conv 11|x N 11[x N 11|X N

. ]{(stﬁdczZ)}Ge }[(StﬁdCZZ)}Ee avg. pool

FIGURE — Example of skeleton architecture.
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Neural Architecture Search

Related Search Space

@ The dissimilarity measures give us knowledge about how related two tasks are.

@ Hence, we can define the search space of the target task by combining the
cells, operations, and skeleton architectures from only the most similar
task(s) in the baseline.

@ Since the search space is restricted only to the space of the most related

tasks, the search algorithm is efficient and requires a reduced number of
GPU-hours.
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Neural Architecture Search

Fusion Search (FUSE)

@ FUSE is our gradient-based search algorithm that evaluates all of the network
candidates as a whole.

@ It is based on the continuous relaxation of the outputs from all of the
network candidates.

@ Let C be the set of candidate networks from the search space.

@ Given c € C and data X, denote by ¢(X) the output of the network c.

@ The relaxed output ¢ is the convex combination of the outputs from all
candidates in C, where each weight in the combination given by exponential
weights :

c(X) =Y _eelad) (16)

ceC ZCIEC exp (ac’)

@ where a. is a continuous variable assigned to network c's output.
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Neural Architecture Search

FUSE (cont’)

@ Next, we conduct the evaluation by jointly training the network candidates
and optimizing their a coefficients :

> freeze « coefficients, jointly train network candidates and their weights.
» freeze network candidates’ weights, update « coefficients.

@ While freezing «, we update the weights w in network candidates by jointly
train the relaxed output € with cross-validation loss on training data :

min Etrain(W; «, EaXtrain)y (17)
w

@ The weights w in those candidates are fixed while we update the «
coefficients with cross-validation loss validation data :

min La(c; w, €, Xyar). (18)

@ These steps are repeated for a number of iterations or until « coefficients
converge. The best candidate in C will be selected by :

* = . 1
¢’ = argmaxac (19)
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Neural Architecture Search

FUSE (cont’)

Algorithm 1: FUSE Algorithm
Initilization : c*, «;

Input : search space S, Xiain, Xvan |;
QOutput : Best architecture;

while criteria not met do

Sample C candidates € S;

Relax the output of C using : ¢(X) =) ¢ %C(X);
dec o

while « not converge do
Update C by descending V, Lain(w; o, ©);
Update a by descending V,L,/(c; w, €);
end

return ¢* = argmin a;
ceC

end
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Neural Architecture Search

Search Result

@ The target task : Task 3 (10-class classification in MNIST)
@ The closest task : Task 7 (10-class classification in CIFAR-10)

TABLE — Comparison with state-of-art classifiers on Task 3 in MNIST.

Architecture Accuracy Parameter GPU
(Task 3) (M) days
VGG-16 99.55 14.72 -
ResNet-18 99.56 11.44 -
DenseNet-121 99.61 6.95 -
Random Search 99.59 2.23 4
FUSE w. related search space 99.67 2.28 2
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Search Result (cont’)

@ The target task : Task 6 (4-class classification in CIFAR-10)
@ The closest task : Task 7 (10-class classification in CIFAR-10)

TABLE — Comparison with state-of-art classifiers on Task 6 in CIFAR-10.

Architecture Accuracy Parameter GPU
(Task 6) (M) days
VGG-16 86.75 14.72 -
ResNet-18 86.93 11.44 -
DenseNet-121 88.12 6.95 -
Random Search 88.55 3.65 4
FUSE w. related search space 90.87 3.02 2
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Neural Architecture Search

Search Result (cont’)

@ The target task : binary classification of indicating moon in 10-object
sub-dataset from Quick, Draw!

@ The closest task : (i) digit 0, (ii) trouser, (iii) digit 3 indicators from MNIST
and fashion-MNIST.

TABLE — Comparison with state-of-art image classifiers on Quick, Draw ! dataset.

Architecture Error Parameter GPU
(%) (M) days
ResNet-18 1.42 11.44 -
ResNet-34 1.2 21.54 -
DenseNet-161 1.17 27.6 -
Random Search 1.33 2.55 4
FUSE w. standard search space | 1.21 2.89 2
FUSE w. related search space 1.18 2.72 2
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Conclusion

Conclusion

@ We define 2 methods to measure the similarity between tasks.
@ By definition, these measures are asymmetric and non-commutative.

© Using these measures, a reduced search space of architectures for a target
task can be constructed using the closest baseline tasks.

@Q This reduces the complexity of architecture search, increases its efficiency.

© Then, our FUSE algorithm quickly evaluates the candidates without fully
train them.

@ The optimum architectures founded by our approach have superior
performance with a smaller number of parameters.
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